QTL analysis of intraspecific differences between two Silene vulgaris ecotypes.
نویسندگان
چکیده
BACKGROUND AND AIMS Serpentine soils provide a highly selective substrate for plant colonization and growth and represent an ideal system for studying the evolution of plant-ecotypes. In the present study the aim was to identify the genetic architecture of morphological traits distinguishing serpentine and non-serpentine ecotypes of Silene vulgaris. METHODS Using an F(2) mapping population derived from an intraspecific cross between a serpentine and a non-serpentine ecotype of S. vulgaris, the genetic architecture of 12 morphological traits was explored using a quantitative trait locus (QTL) analysis. KEY RESULTS The QTL analysis identified a total of 49 QTLs, of which 24 were classified as major QTLs. The mean number of QTLs per trait category was found to correspond well with numbers reported in the literature for similar crosses. Clustering of QTLs for different traits was found on several linkage groups. CONCLUSIONS Morphological traits that differentiate the two ecotypes are strongly correlated, presumably as a consequence of the joint effects of extensive linkage of QTLs for different traits and directional selection. The signature of consistent directional selection was found for leaf and shoot trait divergence. Intraspecific ecotype differences in S. vulgaris were found to be distributed across the entire genome. The study shows that QTL analyses on non-model organisms can provide novel insights into the genetic basis of plant diversification.
منابع مشابه
Genetics of species differences in the wild annual sunflowers, Helianthus annuus and H. petiolaris.
Much of our knowledge of speciation genetics stems from quantitative trait locus (QTL) studies. However, interpretations of the size and distribution of QTL underlying species differences are complicated by differences in the way QTL magnitudes are estimated. Also, many studies fail to exploit information about QTL directions or to compare inter- and intraspecific QTL variation. Here, we compre...
متن کاملNonneutral evolution of organelle genes in Silene vulgaris.
Knowledge of mitochondrial gene evolution in angiosperms has taken a dramatic shift within the past decade, from universal slow rates of nucleotide change to a growing realization of high variation in rates among lineages. Additionally, evidence of paternal inheritance of plant mitochondria and recombination among mitochondrial genomes within heteroplasmic individuals has led to speculation abo...
متن کاملGenetic regulation of gene expression during shoot development in Arabidopsis.
The genetic control of gene expression during shoot development in Arabidopsis thaliana was analyzed by combining quantitative trait loci (QTL) and microarray analysis. Using oligonucleotide array data from 30 recombinant inbred lines derived from a cross of Columbia and Landsberg erecta ecotypes, the Arabidopsis genome was scanned for marker-by-gene linkages or so-called expression QTL (eQTL)....
متن کاملInbreeding effects on progeny sex ratio and gender variation in the gynodioecious Silene vulgaris (Caryophyllaceae).
In gynodioecious species, sex expression is generally determined through cytoplasmic male sterility genes interacting with nuclear restorers of the male function. With dominant restorers, there may be an excess of females in the progeny of self-fertilized compared with cross-fertilized hermaphrodites. Moreover, the effect of inbreeding on late stages of the life cycle remains poorly explored. H...
متن کاملDifferences in style length confer prezygotic isolation between two dioecious species of Silene in sympatry
One fundamental signature of reinforcement is elevated prezygotic reproductive isolation between related species in sympatry relative to allopatry. However, this alone is inadequate evidence for reinforcement, as traits conferring reproductive isolation can occur as a by-product of other forces. We conducted crosses between Silene latifolia and S. diclinis, two closely related dioecious floweri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of botany
دوره 98 2 شماره
صفحات -
تاریخ انتشار 2006